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We demonstrate a statistical method for learning a high-order eddy viscosity model from 
experimental data and using it to improve the predictive skill of a Reynolds-averaged 
Navier-Stokes (RANS) simulator. The method is tested in a supersonic-jet-in-transonic-
crossflow configuration. The process starts with a cubic eddy viscosity model (CEVM), 
calibrated for incompressible flows. It is fitted to measurements of turbulent stresses from a 
compressible flow experiment using shrinkage regression, specifically LASSO. LASSO 
retains the terms in the CEVM that are strongly supported by the data i.e., the most 
important terms, while removing the rest. For our particular case, LASSO removes all the 
terms except one that is quadratic in vorticity. The second step involves calibrating three 
parameters of the RANS model (one being the coefficient of the vorticity term in the 
truncated CEVM) using measurements of mean flow from a jet-in-crossflow experiment. 
The predictions of the calibrated RANS model with (truncated) CEVM is compared with 
experimental data as well as a calibrated RANS model using a linear eddy viscosity model 
(LEVM). Preliminary results show that high-order eddy viscosity model provides better 
predictions of turbulent stresses vis-à-vis RANS simulations with LEVM. 

Nomenclature 
c3 = Constant in the quadratic eddy viscosity model learnt via shrinkage 
C1, C2 = Constants in the equation for the evolution of ε 
Ωobs = Experimental observations of crossplane vorticity 
Ω(C) = RANS predictions of vorticity, for a specified (c3, C2, C1) 
η = Discrepancy between observed and modeled vorticity 
N (µ, σ2) = A normal distribution with mean µ and variance σ2 

 

I. Introduction 
 

-ε models, are routinely used in RANS simulations. However, in complex flow interactions, such as separated 
flows, flows with strong curvature etc. their predictive skills leave much to be desired. A jet-in-crossflow 

interaction is one such example, which is the subject of this study. The lack of predictive skill of RANS is caused by 
(1) approximations inherent in the k-ε model i.e., missing physics, also called structural or model-form error and (2) 
the use of suboptimal values for critical turbulence model parameter e.g., C = (Cµ, C2, C1). The nominal values of 
these parameters, Cnominal = (0.09, 1.92, 1.44), are obtained by calibrating to canonical flows (e.g., shear and channel 
flows) that have little in common with jet-in-crossflow (JIC) interactions. In our previous paper1 we addressed the 
problem of suboptimal values of C by performing a parameter calibration using experimental measurements of a 
supersonic-jet-in-transonic crossflow interaction2,3,4. We posed a Bayesian inverse problem for C and developed a 
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joint probability density function (PDF) using a Markov chain Monte Carlo (MCMC) sampler. In order to facilitate 
the O(104) invocations of the forward model (the RANS) simulator that MCMC required, we replaced the RANS 
simulator with a surrogate model. Samples taken from the PDF were used to run an ensemble of RANS simulations 
to predict flow quantities which were not used in the inverse problem but for which we had experimental 
measurements. The Bayesian calibration improved the entire mean flowfield, but predictions of the turbulent 
stresses were not much better than those provided by Cnominal (note that it is the gradient of turbulent stresses that 
appear in the conservation laws, not the stresses themselves). The calibration effort showed that one of the primary 
sources of model-form error was the simplicity of the linear eddy viscosity model (LEVM) used in the RANS 
model. In this work, we address the remaining source of error in RANS models viz., model-form error. 
 
Enriching the LEVM with high-order terms can reduce the model-form error in RANS simulations; Craft5 describes 
a couple of quadratic and cubic extensions. While LEVM models the turbulent stress τij using the turbulent kinetic 
energy k and the strain rate Sij, the higher order terms contain the vorticity tensor Ωij as well. These terms are 
substantial in flows with strong curvature and/or vortical flows, such as JIC interactions. The high-order models 
have more model parameters - the quadratic models have 3 quadratic terms and the cubic model has 4 cubic terms, 
each with its scaling coefficient. These parameters are calibrated using simple incompressible flow interactions, 
such as curved channel flow, that may not be very relevant in transonic flows. This shortcoming can, in principle, be 
removed by calibration to experimental data. However, these models contain dissipation ε, which is not available 
outside a RANS k-ε simulator; thus the eddy viscosity model parameters can only be calibrated when integrated into 
a k-ε model. 
 
Calibrating a high-order eddy viscosity model, in conjunction with a RANS simulator, is extremely challenging. The 
high-dimensional inverse problem (7 terms for a CEVM, plus any RANS-specific parameters) is computationally 
expensive for any except the simplest of flows. Constructing a surrogate model also does not offer a solution; 
properly sampling a 7-10 dimensional space, for the complex response surfaces that we might expect from a RANS 
JIC simulation would require a training set with O(10D) runs (D being the dimensionality of the parameter space). 
Further, given the limited experimental data, it may not be possible to estimate so many parameters with any degree 
of certainty.  Thus dimensionality reduction is a necessity in this particular calibration problem. 
 
Below we describe a two-step approach to performing the calibration. The first step is aimed at enriching the LEVM 
with as many high-order terms as can be supported by experimental data; each term (which contains Sij and/or Ωij) 
has an unknown scaling coefficient. The second step involves implementing the enriched eddy viscosity model 
(EVM) into a k-ε RANS simulator and estimating the parameters of the enriched EVM as well as the k-ε model. 
Post-calibration, the predictions of the RANS simulator are compared with experimental data and predictions using 
a RANS simulator with a properly calibrated LEVM1.  

II. Technical Foundations 
 
The primary challenge in this calibration exercise is the identification of a suitable model-form for the EVM, 

while balancing the confounding problems of limited experimental data, a large number of parameters and costly 
RANS simulations. In the first step we focus on estimating the model-form of the EVM from experimental data, in 
isolation from the RANS simulator i.e., in the absence of ε that is required by the EVM. Experimental data consists 
of measurements of Reynolds stresses at a set of 315 locations (henceforth, probes) as well as PIV measurements of 
the mean flow (velocities) in the plane containing the probes i.e., velocity gradients at the probes can be computed. 
The approach rests on two key hypotheses: 

 
1. Equilibrium in the production and dissipation of k: A very crude, order-of-magnitude estimate of ε can be 

calculated by assuming that the rate of production of turbulent kinetic energy k is balanced by its 
dissipation; the flow quantities required to compute the production rate were measured in the experiment. 
Note that this assumption does not hold true everywhere and ε may assume non-physical (negative) values 
at certain probes.  

2. Discovery of a model-form via shrinkage regression: In principle, a CEVM with 7 parameters could be 
calibrated using the crude estimate of ε at 315 probes. However, discarding probes with negative ε 
drastically reduces the available experimental data. The linearity of CEVM in the coefficients multiplying  
its terms allows us to pose a parameter estimation problem using LASSO6, a shrinkage method for linear 
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regression problems. LASSO only estimates coefficients in the CEVM that can be strongly inferred from the 
experimental data; it removes the other terms. We hypothesize that while the approximation errors in ε make 
the parameter estimates untrustworthy, the identification and retention of the most important terms in the 
CEVM are performed correctly. 

 
II.A Learning a model-form for the high-order EVM 

 
Let V(obs) be observations of turbulent stresses at the set of probes where ε > 0. Let V(c) be Craft’s CEVM5, with c = 
{ci}, i = 1...7 being the vector of CEVM coefficients. We pose the estimation problem for c as 
 
(Eq. 1)                                                        min𝐩    𝐕 !"# − 𝐕 𝐜

!
!
+   𝜆 𝐜 !, 

 
where || : ||2 is the L2 norm (square root of the sum of squares), || : ||1 is the L1 norm (sum of absolute values) and λ is 
a penalty. The minimization problem is solved using LASSO, which seeks to find parameters c that reduce the data 
– model mismatch (V(obs) – V(c)) as well as the penalty term ||c||1. The simplest way to do so is to set as many ci to 0 
as possible, thus providing a sparse solution to the minimization problem. “Sparsifying” leads to the retention of the 
smallest set of high-order terms in the CEVM that can be justified by V(obs).  
 
The value of λ plays a crucial role in the robustness, simplicity and accuracy of the calibrated EVM. If the value of 
λ is too low, V(c) runs the danger of over-fitting V(obs). This is quantified by cross-validation. V(obs) is divided 
randomly into n equally sized bins (called “folds”).  A value of λ is first set and we initially designate the first fold 
to be the “testing” fold. The EVM is learned (i.e., Eq. 1 is solved) on the remaining folds and its predictive accuracy 
is tested on the data in the “testing” fold, with the prediction error quantified as a root-mean-square-error (RMSE). 
This is repeated n times, by designating a new fold as the testing fold.  The n RMSEs are summarized by their mean 
and standard deviations; they are characteristic of the chosen value of λ. The process is then repeated for different λ 
values. In case λ is too small, and most of the parameters (terms) in the CEVM are retained, the model may over-fit 
the limited training data i.e., the fit to V(obs) appears to be very good, but the model’s predictive skill in the “testing” 
fold is low. If the value of λ is too high, the CEVM is over-simplified (too many terms are removed), and the model 
has difficulty fitting the training data and predicting the testing fold, leading to high errors. For the optimal value of 
λ (λmin) the mean and standard deviation of the RMSEs is minimized. There also exists λ1se, where the mean RMSE 
is the same as the RMSE observed 1 standard deviation away from the mean RMSE for λmin. The model 
corresponding to λmin is the most accurate model, whereas one can use the model corresponding λ1se if one desires a 
very sparse model with reasonable accuracy. 
 
The process described above yields c = {ci}, i = 1…7 with ci that could not be estimated confidently from V(obs) set 
to zero. This provides us with a simplified/sparsified version of CEVM. In principle, we could use the values of c so 
obtained as the calibrated values; however, the approximations used to compute ε (which is used in CEVM) raise 
questions about their accuracy. Therefore we simply use the non-zero values of ci to select the CEVM terms to be 
retained in our final EVM. The data-driven approach to selecting the high-order terms also improves the chances of 
being able to infer their values from experimental data in a Bayesian calibration setting. 
 
 

II.B Calibrating a RANS simulator with a high-order EVM 
 
The model-form learnt in II.A is integrated into a compressible k-ε RANS simulator. The model equations being 
solved are described in Ref. 1. Let cs = {ci}, 𝑐!   ≠ 0, be the set of model coefficients in the sparsified form of the 
EVM. The (RANS) model parameters being estimated are C = {cs, C2, C1}; C2 and C1 appear in the equation for the 
turbulent kinetic energy k. They are inferred from the experimental data in Ref. 4. The experimental setup is shown 
in Fig.1 (left). A Mach 3.73 jet is introduced from the bottom of the test section into a Mach 0.8 crossflow, flowing 
left to right. The jet curls over to the right and evolves into a counter-rotating vortex pair (CVP) as seen in Fig.1 
(right).  PIV measurements of mean flow velocities and turbulent stresses 𝜏!" =    𝑢! , 𝑢!  are obtained on the 
midplane (plane of symmetry) and the crossplane (which slices through the CVP). The vorticity on the crossplane, 
inside a window W that frames one of the vortices of the CVP, is chosen as the calibration variable. Let Ω (obs) be the 
streamwise vorticity observed at a set of locations (“probes”) in W. Let the set of probes be P. Let Ω(C) be the 
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RANS prediction of the same corresponding to a parameter combination C. We relate the two by Ω (obs) = Ω(C) + η , 
η  = {ηj}, ηj ~ N(0, σ2), 𝑗  𝜖  P i.e., the observed and predicted vorticity at a probe differ by ηj, a composite of 
measurement and model-form errors; ηj collected over P resemble draws from a normal distribution with zero mean 
and an unknown standard deviation σ. A Bayesian inverse problem is formulated for the posterior distribution of C, 
conditional on Ω (obs) P(C, σ | Ω (obs)) 
 

(Eq. 2) 𝑃 C,𝜎 Ω(!"#)   ∝
1
𝜎 P   exp −

𝛀 !"# −   Ω C
!
!

2𝜎!
Π C , 

 
where Π(C) is our prior belief regarding the where the appropriate values of C might lie. The distribution P(C, σ | 
Ω (obs)) is arbitrary i.e., it does not belong to one of the analytical families such as Normal, Gamma etc. 
Consequently, we use a MCMC algorithm7, to draw (C, σ) samples which are then histogrammed to visualize P(C, 
σ | Ω (obs)). The computational cost of generating Ω(C) is addressed by developing polynomial surrogates of the 
RANS simulator. The process for constructing surrogates is described in Ref. 1. 
 

 
Fig.	
  1	
  Left:	
  Schematic	
  of	
  the	
  test	
  section.	
  The	
  M	
  =	
  3.73	
  jet	
  is	
  introduced	
  from	
  the	
  bottom	
  on	
  the	
  left.	
  The	
  crossflow,	
  at	
  M	
  =	
  
0.8,	
   flows	
   left	
   to	
   right.	
   The	
  midplane	
   and	
   crossplane	
  where	
   PIV	
  measurements	
   of	
  mean	
   flow	
   velocities	
   and	
   turbulent	
  
stresses	
  are	
  available	
  are	
  show.	
  The	
  flow	
  is	
  statistically	
  steady.	
  Right:	
  The	
   jet,	
  on	
   interacting	
  with	
  the	
  crossflow,	
  curves	
  
and	
  rolls	
  into	
  a	
  counter-­‐rotating	
  vortex	
  pair	
  (CVP).	
  

 
II.C Developing an informative prior distribution Π(C) 

 
Upper and lower bounds on each of its constituents can delimit the parameter space for C; they form a hypercube 
H . However H is not very useful for calibration; many parameter combinations C drawn from H are unrealizable 
and either cause the RANS simulator to crash, not lead to a converged solution i.e., no steady-state flow solution 
exists, or provide flow solutions that do not resemble compressible flows. Consequently we construct a prior 
distribution Π(C) in the manner described in Ref. 1. The parameter space is sampled (we refer to this as the 
“training set”) and RANS simulations are initiated. Of the runs that were realized, we compute the mean square 
error (MSE) ||Ω (obs) - Ω(C)||22. We choose the runs whose MSE lie below the first quartile. The parameters Ci that 
correspond to these “good runs” describe a coherent region R in H where we believe that the optimal parameters 
may be found. We define our prior belief Π(C) as being 1 for C 𝜖 R and 0 otherwise. 
 
In order to formalize the definition of R so that we can include it in the MCMC calibration, we construct a 
classifier. The process is described in Ref. 1. We define a binary variable ζ(C), such that ζ(C) = 1, for all C 
corresponding to the “chosen runs”; else ζ(C) = 0. We train a support vector machine classifier (SVMC) on this 
dataset, and incorporate it into the right hand side of Eq. 2 to serve as Π(C) i.e., given an arbitrary C, the classifier 
identifies whether it lies in R (Π(C) = 1) or not (Π(C) = 0). 
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III. Calibration Results 
 

A model-form for the EVM: Turbulent stress measurements on the midplane are used to learn the model form for 
the EVM. As described in Sec.II.A, we compute an approximate ε and discard probes where ε < 0. Only 103/315 
probes survive the cut. At each probe, we employ three observables τ11, τ22 and τ12 i.e., we have 306 observations. 
The shrinkage is initiated with Craft’s CEVM (which has 7 parameters). Note that while 306 data points may seem 
sufficient to infer 7 parameters, there is no guarantee that the midplane data are actually informative about all the 
CEVM parameters. In Fig 2 (left) we plot the performance of the shrinkage for different values of λ. Deviance is the 
difference between the V(obs) and V(c) when all high-order terms are removed. We see that as λ increases, the ability 
of the model to fit the training data and explain the deviance decreases. Note that no cross-validation was performed. 
In Fig. 2 (mid) we see how increasing λ reduces the number of non-zero parameters in the CEVM. In Fig. 2 (right), 
we see the results from the 15-fold cross-validation performed for various values of ln(λ). The values of λmin and λ1se 
are also plotted, along with the complexity (the number of non-zero ci) of the CEVM. Note that for λ1se only one 
term is retained in the EVM; the term is quadratic in vorticity. Given the strongly vortical nature of the flow, this is 
not entirely surprising. In Table 1 we tabulate ci obtained using λmin and λ1se; they are quite different from ci 
obtained by Craft from incompressible curved channel flows. Given the simple enhancement of the LEVM that λ1se 
provides, we will proceed with a LEVM enriched with a quadratic vortical term and C = {c3, C2, C1}. We will refer 
to it as the quadratic eddy viscosity model, QEVM. 
 

 

Constructing the prior Π(C): The first step in the construction of the informative prior is to explore the 3-
dimensional parameter space H for C = {c3, C2, C1}. The bounds were: 0   ≤    𝑐! ≤ 3.5, 1.7   ≤ 𝐶! ≤ 2.5, 1.2   ≤ 𝐶! ≤
1.7. The bounds for C2 and C1 were obtained from Ref. 8. 2744 {c3, C2, C1} samples were selected from H using a 
quasi-Monte Carlo, space-filling Halton sequence. Of these, 222 runs completed, which are plotted in Fig. 3 (left). 
We clearly see that lower values of c3 are favored, though smaller values of C2 and C1 may allow c3 to assume 
values around 0.6. No run with a value of c3 > 1 was realized, showing the degree of error introduced into Table 1 
due to the use of approximate values of ε in the CEVM. The selection of the top quartile of runs did not allow the 
training of an accurate SVMC (misclassification rate < 10%) due to the paucity of training data, though it did allow 
us to select a more relevant training set of 1500 C samples from the populated portion of H, as seen in Fig. 3 (left). 
The training data is still being generated. 

Fig	
   2.	
   Left:	
   The	
   reduction	
   in	
   fraction	
   of	
   the	
   deviance	
   explained	
   as	
   the	
   EVM	
  model	
   is	
   simplified	
   by	
  penalizing	
   the	
  
number	
  of	
   terms	
   it	
  contains	
   i.e.,	
  by	
   increasing	
  λ.	
  Middle:	
  The	
  reduction	
   in	
   the	
  number	
  of	
  model	
  parameters	
   in	
   the	
  
EVM	
  model	
  as	
  l	
  is	
  increased.	
  Right:	
  Results	
  from	
  the	
  15-­‐fold	
  cross-­‐validation	
  of	
  the	
  CEVM	
  model.	
  The	
  red	
  line	
  is	
  the	
  
mean	
  RMSE	
  whereas	
  the	
  error	
  bars	
  are	
  the	
  standard	
  deviations.	
  The	
  two	
  vertical	
  lines	
  are	
  λmin	
  and	
  λ1se. 
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Calibrating a RANS simulator with the QEVM: In the absence of a proper training set, we have not yet been able 
to perform a Bayesian calibration for C = {c3, C2, C1}.  However, the 222 successful simulations do allow us to 
perform a preliminary test to check if the QEVM has the potential to provide better predictions of vorticity on the 
crossplane compared to a calibrated LEVM and determine the nature of QEVM predictions using best QEVM run. 
The calibration of the LEVM is described in Ref. 1. In Fig. 3 (right) we plot the distribution of RMSE in the 
crossplane vorticity (vis-à-vis experimental values) from the top quartile of simulations performed using LEVM and 
the 222 QEVM runs that were successful. We see from the PDF that QEVM RMSEs can assume smaller values than 
LEVM RMSEs. The distribution of errors allows us to select the best performing QEVM and compare it’s 
predictions with those obtained from a calibrated LEVM.  
 
In Fig. 4, we plot the predictions of τ11 (first column), τ22 (second column) and τ12 (third column) on the midplane 
computed using the calibrated LEVM, the best-case QEVM and the experimental measurements. These are plotted 
at 3 distances downstream of the jet – 200 mm (first row), 250 mm (second row) and 300 mm (bottom row). It is 
quite clear that the QEVM performs far better than LEVM. QEVM (note: the parameter set is not calibrated to the 
data; we simply chose the best run of the 222 that were realized) tends to over-predict τ22 whereas LEVM 
underpredicts it; as one proceeds downstream, QEVM provides better predictions of τ22 than LEVM. In contrast 
LEVM predicts τ11 better, with QEVM overpredicting it consistently. 
 

Method c1 c2 c3 c4 c5 c6 c7 MSE 

Craft -0.1 0.1 0.26 -10 0 -5 5 0.662 

λmin -0.052 -0.061 1.56 -2.36 7.1 4.27 0 0.386 

λ1se 0.0 0.0 0.397 0.0 0 0 0 0.483 

Table	
  1:	
  Parameters	
  of	
  the	
  CEVM	
  estimated	
  using	
  λmin	
  and	
  λ1se,	
  compared	
  with	
  the	
  classical	
  values	
  
obtained	
  from	
  incompressible	
  curved	
  channel	
  flows	
  by	
  Craft.	
  

Fig.	
  3:	
  Left:	
  Distribution	
  of	
  C	
  in	
  H	
  corresponding	
  to	
  the	
  222	
  QEVM	
  runs	
  that	
  successfully	
  completed.	
  It	
  shows	
  the	
  
realizable	
  part	
  of	
  H.	
  	
  Right:	
  Distributions	
  of	
  RMSEs	
  of	
  streamwise	
  vorticity,	
  vis-­‐à-­‐vis	
  experimentally	
  observed	
  

values.	
  The	
  two	
  distributions	
  correspond	
  to	
  simulations	
  with	
  LEVM	
  and	
  QEVM. 
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Fig.	
  4:	
  Comparison	
  of	
  Reynolds	
  stresses	
  as	
  predicted	
  by	
  a	
  calibrated	
  LEVM	
  (blue	
  line)	
  and	
  our	
  best	
  QEVM	
  run	
  (red	
  line).	
  
The	
  three	
  rows	
  of	
  figures	
  correspond	
  to	
  three	
  station	
  200mm,	
  250mm	
  and	
  300mm	
  downstream	
  of	
  the	
  jet.	
  The	
  three	
  

columns	
  are	
  plots	
  of	
  τ11,	
  τ22	
  and	
  τ12	
  respectively.	
  	
  QEVM’s	
  predictions	
  of	
  τ12	
  are	
  quite	
  impressive.	
  

 
 

IV. Conclusion, Outline of the Final Paper and Future Work 
 
We have developed a method for addressing the model-form errors in RANS simulations. The method seeks to 

learn a better form for the eddy viscosity model from experimental data using LASSO. Due to the approximations 
inherent in how the model discovery problem is formulated, we only accept the model form that is discovered and 
ignore the model parameters that are also estimated by LASSO.  Our method revealed that given the data at hand, 
the linear eddy viscosity model could be enriched with a quadratic term in vorticity (for our strongly vortical flow); 
further, the corresponding model parameter could be estimated from data. We refer to the enriched EVM as the 
QEVM. A RANS simulator with the QEVM has been constructed and is being used to generate a training dataset. 
Preliminary runs show that the QEVM has the potential to be more accurate than the LEVM; further, it will improve 
predictions of turbulent stresses, whereas mean flow predictions will likely be similar to LEVM. 

 
In the final paper, we will construct surrogate models of vorticity predictions on the crossplane by RANS-QEVM. 
These surrogates will be used in a Bayesian calibration of C to construct the posterior distribution P(C, σ | Ω (obs)). 
The predictive skill of P(C, σ | Ω (obs)) will be checked via posterior predictive tests for the mean flow on the 
midplane. The predictions will be compared with LEVM results from our previous paper1. 
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